Metacyclophanes and Related Compounds. Part 16. Preparation of 8-Fluoro-tbutyl[2.2]metacyclophanes and their Treatment with Aluminium ChlorideNitromethane in Benzene ${ }^{1}$

Takehiko Yamato, Takashi Arimura, and Masashi Tashiro*
Research Institute of Industrial Science, and Department of Molecular Science and Technology, Graduate School of Engineering Science, Kyushu University 86, 6-1 Kasuga-kohen, Kasuga-shi, Fukuoka 816, Japan

Abstract

The preparation of 8-fluoro-t-butyl[2.2]metacyclophanes (5) are described. Dithia[3.3]metacyclophane (3) and [3.3]metacyclophane bis(sulphones) (4) were obtained as a mixture of transoid and cisoid conformers, but [2.2]metacyclophanes (5) were exclusively obtained as the transoid conformer after pyrolysis of the sulphones (4). $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$-Catalyzed trans-t-butylation of 8-fluoro-16-methyl-5,13-di-t-butyl[2.2]metacyclophane (5a) in benzene under a variety of conditions failed to give 8 -fluoro-16methyl[2.2]metacyclophane (32) but, instead, the tetrahydropyrenes (33) and/or (34) were obtained depending upon the conditions used. Internally substituted [2.2]metacyclophanes were isomerized to the strainless [2.2]metacyclophanes and these were then oxidized to the tetrahydropyrene (33).

Recently we found that 8,16 -dimethyl- ${ }^{2}, 8,16$-dihydroxy-, ${ }^{3}$ and 8,16-difluoro-[2.2]metacyclophanes ${ }^{4}$ can be prepared by $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$-catalyzed trans-t-butylation of the corresponding t-butyl derivative. These results suggest that 16-

substituted 8 -fluoro[2.2]metacyclophanes might be prepared from the corresponding t-butyl derivatives by the similar manner. ${ }^{2}$ We report here the preparation of the title compounds and their treatment with $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$ catalyst in a benzene solution.

Results and Discussion

Preparation.-A preparative route to the title compounds is summarized in Scheme 2.

The preparations of (1a) ${ }^{5}$ and ($\left.\mathbf{2 a - b}\right)^{2}$ have already been described in earlier papers. Since, however, the chloromethylation of t-butylfluorobenzene afforded (1a) only in low yield, the preparation of $2,6-\mathrm{bis}$ (bromomethyl)-4-t-butylfluorobenzene (15) was, instead, attempted.

1-Fluoro-2,6-dimethyl-4-t-butylbenzene (10), prepared in four steps from m-xylene, on bromination with 2.2 equivalents of NBS gave a mixture of mono- (14), di- (15), and tri-bromides (16); with 4.1 equiv. of NBS the tetrabromide (17) was obtained in 54% yield. Compound (12) was prepared from (10) by $\mathrm{AlCl}_{3}-$ MeNO_{2}-catalyzed trans-t-butylation in the presence of biphenyl (11) as an acceptor. ${ }^{6}$ In contrast to that of (10), bromination of (12) with 2.2 equiv. of NBS afforded a good yield of the desired compounds (1b).

The preparative route to compound (2c) is shown in Scheme 4. Direct preparation of (19) from (18) by bromination afforded a mixture of (19) and its isomer (20). The molar ratio of (19):(20) is $1: 1$, as estimated from n.m.r. spectral results.

Table 1. Chemical shifts (δ) of internal methyl protons of dithia[3.3]metacyclophanes (3), [3.3]metacyclophane bis(sulphones) (4), and [2.2]metacyclophanes (5).

Compound	Chemical shifts (p.p.m.) of methyl protons		Ratio of transoid and cisoid methyl protons	
	transoid	cisoid	transoid	cisoid
(3a)	1.47	2.40	3	2
(3b)	1.53	2.40	1.6	1
(3d)	1.56	2.40	1	2
(4a)	1.37	2.50	3	2
(4b)	1.34	2.55	1.6	1
(4d)	1.24	2.50	1	2
(5a)	0.63		1	0
(5b)	0.59		1	0
(5d)	0.63		1	0

Table 2. The $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$ catalyzed reaction of 8-fluoro-16-methyl5,15 -di-t-butyl[2.2]metacyclophane (5a) in benzene ${ }^{a}$

	$\frac{\text { Catalyst/(5a) }}{}$		
Run	(mol/mol)	Time (h)	Product (\%) ${ }^{b}$
1	1.3	2	$(\mathbf{3 3 3})(82)$
2	2.0	2.5	$(33)(80),(34)(6)$
3	2.6	3	$(34)(97)$
4	4.0	1.5	$(34)(96)$
5^{c}	1.3	0.25	$(34)(90)$

${ }^{a}$ The reaction temperature was $25^{\circ} \mathrm{C}$. ${ }^{b}$ The isolated yields are shown ${ }^{c} \mathrm{AlCl}_{3}$ is used as a catalyst.

Therefore, (19) was prepared by the alternative route shown in Scheme 4. The trans-t-butylation of (23) in the presence of $\mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}$, and AlI_{3} or de-t-butylation in boiling $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ failed to give the expected compound (24). However, the trans-tbutylation of (19), which was prepared from (22), gave (25) in good yield.

Mitchell and Boekelheide ${ }^{7}$ reported that reaction of 2,6 bis(chloromethyl)toluene (27) and (2c) afforded a mixture of the transoid and cisoid conformers (28) and (29) respectively. In contrast we found that ${ }^{2}$ reaction of 2,6 -bis(chloromethyl)-4-tbutyltoluene (30) and (2a) afforded exclusively the transoid conformer (31). The n.m.r. spectra of (3) and (4) prepared in the

(1)
a; $R^{\mathbf{l}}=B u^{t}, X=C l$
b; $R^{1}=H, X=B r$
\dagger

transoid-(3)
(2)
a; $R^{2}=M e, R^{3}=B u^{t}$
b; $R^{2}=H, R^{3}=B u^{t}$
c; $R^{2}=M e, R^{3}=H$

$$
\text { c; } R^{2}=M e, R^{3}=H
$$

and/or

cisoid-(3)
a; $R^{1}=R^{3}=B u^{t}, R^{2}=M e$
(71\%)
b; $R^{1}=B u^{t}, R^{2}=M e, R^{3}=H$
(54\%)
c; $R^{1}=B u^{t}, R^{2}=H, R^{3}=M e$
(49%)
d; $R^{1}=H, R^{2}=M e, R^{3}=B u$
(30%)
e; $R^{1}=R^{2}=B u^{t}, R^{2}=H$
(39%)

$\downarrow{ }^{1 i}$

and/or
(4)

(5)
a; 91%
b; 73%
c; 78%
d; 67%
e; 81%
Scheme 2. Reagents and conditions: i, KOH-EtOH, high dilution; ii, m CPBA, CHCl_{3} (ca. 100%); iii, $500{ }^{\circ} \mathrm{C}, 3 \mathrm{mmHg}$
present work show that they are a mixture of transoid and cisoid conformers, the molar ratio of which seems dependent upon the 5 - and 13 -substituents (see Table 1). The data show that the molar ratios of the transoid and cisoid conformers of (3) and (4) are almost equivalent, an indication that there is no exchange between the two during the oxidation of (3) to (4). On pyrolysis, compound (4) gave the less strained transoid conformer of (5) exclusively, the syn conformer not being detected by n.m.r. spectroscopy. $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$-catalyzed trans-t-butylation of

(7)
(8)

$v^{v i}$

(12) (90%)
(13)

(16)
(12) $\xrightarrow{\mathrm{ix}}$ (1b)

Scheme 3. Reagents and conditions: i, 4-methyl-2,6-di-t-butylphenol, $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$ (quart); ii, $\mathrm{HNO}_{3}\left(75 \%\right.$); iii, $\mathrm{Fe}-\mathrm{HCl}(89 \%)$; iv, NaNO_{2}, HBF_{4}; v, heat (47%); vi, $\mathrm{AlCl}_{3}, \mathrm{CS}_{2}, \mathrm{Ph}-\mathrm{Ph}(11)$; vii, NBS (2.2 equiv.), CCl_{4}; viii, NBS (4.1 equiv.), CCl_{4} (54%); ix, NBS (2.2 equiv.), CCl_{4} (80%).
(5a) in benzene under a variety of conditions failed to give the expected compound 8-fluoro-16-methyl[2.2]metacyclophane (32), ${ }^{2-4} 4$-t-butylbenzene (35) and the tetrahydropyrenes (33) and/or (34) being formed instead (see Scheme 6 and Table 2). Mild conditions gave compound (33) as the sole product whilst more severe gave compound (34) a result which suggests that (33) might be an intermediate in the formation of (34). Indeed, (34) was also obtained in good yield when (33) was treated with $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$; oxidation of (34) with DDQ in benzene led to 2-methylpyrene (36). ${ }^{8}$

Similar catalytic treatment of (5b) also afforded (33) (79\%) while (5d) gave only (34) (84%) $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$ Catalyzed reaction of (5b) and (5d) also afforded (33) and (34), and a schematic representation of the path for this set of reactions is shown in Scheme 7. Although two routes, a and b (see Scheme 7) may be envisaged for the formation of (34) from (5a), route b may be ruled out because (i) the $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$ catalyzed reaction of (5a) under mild conditions afforded (33) exclusively and (ii) isomerization of (5b) to give strainless ($\mathbf{5 c}$) is more likely than a route via (5 d) and the strained compound (37). Indeed, catalytic treatment of (5c) in benzene gave compound (33) (86%) as expected on the basis of earlier reported observations. ${ }^{2}$ A mechanism for the formation of (33) from (5c) is tentatively

b; $R=\mathrm{CO}_{2} \mathrm{H} \quad(88 \%)$
c; $R=\mathrm{CO}_{2} \mathrm{Et}(96 \%)$
d; $R=\mathrm{CH}_{2} \mathrm{OH}(98 \%)$
e; $R=\mathrm{CH}_{2} \mathrm{Br}(90 \%)$

Scheme 4. Reagents and conditions: i, $\mathrm{Br}_{2}, \mathrm{Fe}$; ii, $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}(77 \%)$; iii, $\mathrm{Fe}-\mathrm{HCl}(60 \%)$; iv, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{AcOH}(98 \%) ; \mathrm{v}, \mathrm{AlCl}_{3} ;$ vi, $\mathrm{AlBr}_{3} ;$ vii, AlI_{3}; viii, $\mathrm{H}_{3} \mathrm{PO}_{4}$, heat; ix, $\mathrm{NaNO}_{2} ; \mathrm{x}, \mathrm{CuBr}, \mathrm{HBr}(62 \%)$; xi, AlCl_{3}, benzene (83%); xii, thiourea; xiii, $\mathrm{NaOH}(92 \%)$.

(30)

(31)

Scheme 7.
$(5 \mathrm{c})$
${ }^{+}+\mathrm{H}^{+}$

A
(33)
$\hat{H}_{-H^{+}}$

C
Scheme 8.

(5e)

(40)

(b)

Scheme 9. Reagents and conditions: i, $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$, benzene (73%); ii, $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$, benzene (83%); iii, DDQ, benzene (80%).
proposed in Scheme 8. On the basis of above results it was expected that ($\mathbf{5 e}$) might give the corresponding tetrahydropyrenes (39) and (40) and indeed this occurred. Thus (5e) with $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$ in benzene at $25^{\circ} \mathrm{C}$ for 1 h gave (39) (73%) and this upon further treatment (13 h) gave compound (40) in good yield. Oxidation with DDQ of (40) in boiling benzene afforded pyrene (41) itself (see Scheme 9).

Formation of (39) from (5e) appears to support the proposed reaction pathways described above.

Experimental

All m.p.s and b.p.s are uncorrected. N.m.r. spectra were determined at 100 MHz with a Nippon Denshi JEOL FT-100 n.m.r. spectrometer with SiMe_{4} as an internal reference, and i.r. spectra were measured as KBr pellets or a liquid film on NaCl plates in a Nippon Bunko IR-A-102 spectrophotometer. Mass spectra were obtained on a Nippon Denshi JMS-01SA-2 spectrometer at 75 eV using a direct inlet system through g.c.

Preparation of 1,3-Dimethyl-2-nitro-5-t-butylbenzene (8).To a solution of compound (7) ${ }^{8}(117 \mathrm{~g}, 0.72 \mathrm{~mol})$ in acetic
anhydride (130 g) was added gradually at $25^{\circ} \mathrm{C}$ a mixture of nitric acid (68 g), acetic acid (43 g) and acetic anhydride (43 g). After this addition, the reaction mixture was poured into a large amount of ice-water and extracted with benzene. The benzene solution was washed with 10% aqueous NaOH and water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure to leave a residue which was recrystallized from ethanol to give (8) (112 g, 75%) as pale yellow prisms, m.p. $85-86^{\circ} \mathrm{C}$ (lit., ${ }^{9}$ m.p. $85^{\circ} \mathrm{C}$).

Preparation of 2,6-Dimethyl-4-t-butylaniline (9).-A mixture of compound (8) $(86.7 \mathrm{~g}, 0.42 \mathrm{~mol})$, iron powder $(81 \mathrm{~g})$, concentrated $\mathrm{HCl}(30 \mathrm{ml})$, ethanol (40 ml), and water (250 ml) was stirred and heated under reflux for 28 h after which time the iron powder was filtered off. The filtrate was extracted with benzene and the extract washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to leave a residue which was distilled under reduced pressure to give (9) $(65.8 \mathrm{~g}, 89 \%)$ as colourless oil, b.p. $89-91^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; v_{\text {max. }}(\mathrm{NaCl}) 3450$, 3 375, 3 000, 2 950, 2 840, 1 615, $1515,1488,1350,1210,1120$, 1025,860 , and $725 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.26(9 \mathrm{H}, \mathrm{s}), 2.12(6 \mathrm{H}, \mathrm{s})$, $3.34\left(2 \mathrm{H}\right.$, br s, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.92(2 \mathrm{H}, \mathrm{s}) ; m / z 177\left(\mathrm{M}^{+}\right)$ (Found: C, 81.2; H, 11.2. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 81.30 ; \mathrm{H}$, 10.80%).

Preparation of 1-Fluoro-2,6-dimethyl-4-t-butylbenzene (10).To a solution of the amine (9) ($50.1 \mathrm{~g}, 0.28 \mathrm{~mol}$) in tetrahydrofuran (95 ml) cooled in an ice- NaCl bath was added first $\mathrm{HBF}_{4}(42 \%)(447 \mathrm{ml})$ and then saturated aqueous $\mathrm{NaNO}_{2}(11$ g). The resulting crystalline precipitated was filtered off, washed with $5 \% \mathrm{HBF}_{4}$ solution and methanol, and dried in vacuo. Subsequently it was heated under reflux in toluene for 5 h , to afford after evaporation under reduced pressure of the solvent a residue which was distilled under reduced pressure to give (10) as pale yellow oil ($24.2 \mathrm{~g}, 48 \%$), b.p. $70-71^{\circ} \mathrm{C}$ at 4 mmHg ; $v_{\text {max. }}(\mathrm{NaCl}) 2980,2890,1490,1365,1320,1195,1120,870$, 815 , and $725 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.26(9 \mathrm{H}, \mathrm{s}), 2.22(6 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz})$, and $6.94\left(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}\right.$); m/z $179\left(\mathrm{M}^{+}\right)$(Found: C, 80.1; H, 9.6. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~F}$ requires $\mathrm{C}, 79.96 ; \mathrm{H}, 9.51 \%$).

Bromination of Compound (10) with NBS: Typical Proce-dure.-A solution of compound (10) $(2.0 \mathrm{~g}, 11.1 \mathrm{mmol})$, NBS $(8.1 \mathrm{~g}, 45.5 \mathrm{mmol})$, and benzoyl peroxide (500 mg) in CCl_{4} (300 ml) was heated under reflux for 4 h after which the mixture was cooled to room temperature. The precipitated succinimide was filtered off and the filtrate evaporated under reduced pressure to leave a residue which was recrystallized from hexane to give (17) $(2.89 \mathrm{~g}, 54 \%)$ as pale yellow prisms, m.p. $132-133{ }^{\circ} \mathrm{C}$; $v_{\text {max. }}$. (K Br) $2970,2870,1660,1470,1360,1275,1210,1150$, $1090,975,880,815,750,695$, and $660 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37(9$ $\mathrm{H}, \mathrm{s}), 6.85(2 \mathrm{H}, \mathrm{s})$, and $7.76(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}) ; m / z 491,493,495$, 497, and $499\left(M^{+}\right)$(Found: C, 29.15; H, 2.75. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FBr}_{4}$ requires C, 29.07; H, 2.64\%).

When bromination of $(\mathbf{1 0})$ with 2.1 equiv. of NBS was carried out under similar conditions to those described above, a mixture of (10), (14), (15), and (16) was obtained as described in the text. The molar ratios of the products was estimated by n.m.r. spectral analysis of the mixture.

Preparation of 1-Fluoro-2,6-dimethylbenzene (12).-To a solution of compound (10) $(2.0 \mathrm{~g}, 11.1 \mathrm{mmol})$ and biphenyl (8.55 $\mathrm{g}, 5.55 \mathrm{mmol})$ in $\mathrm{CS}_{2}(15 \mathrm{ml})$ was added $\mathrm{AlCl}_{3}(0.5 \mathrm{~g}, 3.75 \mathrm{mmol})$. The mixture was then stirred at room temperature for 1.5 h after which it was poured into a large amount of ice-water and extracted with methylene chloride; the extract was washed with water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure to leave a residue which was distilled under reduced pressure to give (12) ($1.24 \mathrm{~g}, 89.9 \%$) as a colourless oil, b.p. $165-167^{\circ} \mathrm{C}$ at 760 mmHg (lit., ${ }^{10}$ b.p. $85^{\circ} \mathrm{C}$ at 115 mmHg).

Preparation of 1,3-Bis(bromomethyl)-2-fluorobenzene (1b).A solution of compound (12) ($3.0 \mathrm{~g}, 24.2 \mathrm{mmol}$), NBS (9.48 g , 532 mmol), and benzoyl peroxide (500 mg) in $\mathrm{CCl}_{4}(300 \mathrm{ml})$ was treated and worked up as described above, to afford (1b) $(5.46 \mathrm{~g}$, 80%) as colourless prisms (from hexane), m.p. $90-91{ }^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ m.p. $90-91.5^{\circ} \mathrm{C}$).

Bromination of 4-t-Butyltoluene (18) with Bromine.Although bromination of (18) with bromine under the reported conditions ${ }^{12}$ afforded the desired 2-bromo-4-t-butyltoluene in good yield, similar bromination of (18) with 2 mol equiv. of bromine gave a mixture of (19) and (20), which were inseparable by distillation and column chromatography (silica gel). The molar ratio and the determination of the structures of both products were carried out by n.m.r. spectral analysis.

Preparation of 2,6-Diamino-4-t-butyltoluene (22).-A mixture of compound (21$)^{13}(30 \mathrm{~g}, 126 \mathrm{mmol})$, iron powder $(4.88 \mathrm{~g})$, concentrated $\mathrm{HCl}(18.1 \mathrm{ml})$, and water $(200 \mathrm{ml})$ was treated and worked up as described in the reduction of compound (8), to afford (22) ($13.5 \mathrm{~g}, 60 \%$) as colourless plates (from hexane), m.p. $96-97^{\circ} \mathrm{C}$; $v_{\text {max. }}(\mathrm{KBr}) 3430,3380,3310,3200,2950,2850$, $1570,1510,1450,1425,1355,1330,1270,1200,1160,1135$, $1070,940,840,820,780,710$, and $660 \mathrm{~cm}^{-1} ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 1.22(9$ $\mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s}), 3.30\left(4 \mathrm{H}\right.$, br s, disappeared with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $6.20(2 \mathrm{H}, \mathrm{s}) ; m / z 177\left(\mathrm{M}^{+}\right)$(Found: C, 74.25; H, 10.5; N, 15.5. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires C, $74.11 ; \mathrm{H}, 10.18 ; \mathrm{N}, 15.71 \%$).

Preparation of 2,6-Diacetamido-4-t-butyltoluene (23).-A solution of compound (22) ($10 \mathrm{~g}, 56 \mathrm{mmol}$) in acetic acid (15 ml) and acetic anhydride (150 ml) was stirred for 15 min at room temperature and then heated for 30 min on water-bath, before it was poured into a large amount of ice-water. The precipitated crystals were filtered off, washed with water, and recrystallized from ethanol to give (23) ($14.4 \mathrm{~g}, 98 \%$) as colourless prisms, m.p. $>300^{\circ} \mathrm{C}$; $v_{\text {max. }}(\mathrm{KBr}) 3230,3040,2960,2870,1650$, $1610,1530,1475,1425,1400,1365,1290,1270,1230,1110$, $1035,970,930,870,815,730$, and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{Me}_{2} \mathrm{SO}\right) 1.21(9$ $\mathrm{H}, \mathrm{s}), 1.94(3 \mathrm{H}, \mathrm{s}), 2.01(6 \mathrm{H}, \mathrm{s}), 7.11(2 \mathrm{H}, \mathrm{s})$, and $9.30(2 \mathrm{H}, \mathrm{s}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$); $m / z 261\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 68.85 ; \mathrm{H}$, 8.6; $\mathrm{N}, 10.55 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.67 ; \mathrm{H}, 8.45 ; \mathrm{N}, 10.68 \%$).

Preparation of 2,6-Dibromo-4-t-butyltoluene (19) from compound (22).-To concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(75 \mathrm{ml})$ was added first $\mathrm{NaNO}_{2}(7.5 \mathrm{~g})$ at $70^{\circ} \mathrm{C}$ and then a solution of compound (22) ($8.2 \mathrm{~g}, 46 \mathrm{mmol}$) in acetic anhydride (45 ml). This solution was then added gradually to a solution of $\mathrm{CuBr}(6.7 \mathrm{~g}, 46.5 \mathrm{mmol})$ in concentrated hydrobromic acid (140 ml) $<40^{\circ} \mathrm{C}$. After cessation of N_{2} evolution the reaction mixture, was poured into water, steam distilled, and the distillate extracted with benzene. The extract was washed with 10% aqueous NaOH and water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure to leave a residue which was distilled under reduced pressure to give (19) ($8.73 \mathrm{~g}, 62 \%$) as a colourless oil, b.p. $100-112{ }^{\circ} \mathrm{C}$ at 2.5 mmHg; $v_{\text {max. }}(\mathrm{NaCl}) 2960,2870,1590,1530,1450,1380,995$, 870,730 , and $690 \mathrm{~cm}{ }^{1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.27(9 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s})$, and $7.46(2 \mathrm{H}, \mathrm{s}) ; m / z ~ 304,306$, and $308\left(\mathrm{M}^{+}\right)$(Found: C, 42.6; H, 4.4. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br}_{2}$ requires $\mathrm{C}, 42.93 ; \mathrm{H}, 4.61 \%$).

Preparation of 2,6-Dibromotoluene (25).-A mixture of compound (19) ($5.0 \mathrm{~g}, 16.3 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(2.2 \mathrm{~g}, 16.5 \mathrm{mmol})$ in benzene (40 ml) was stirred at room temperature for 6 h after which the mixture was poured into a large volume of water and extracted with ether. The ether solution was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to leave a residue which was distilled under reduced pressure to give (25) $(3.38 \mathrm{~g}, 83 \%)$ as a colourless oil, b.p. $123-125^{\circ} \mathrm{C}$ at 23 mmHg (lit., ${ }^{14} 122^{\circ} \mathrm{C}$ at 23 mmHg). t -Butylbenzene formation was detected by g.c. analysis of the reaction mixture.

Preparation of the Toluene Derivatives (26a-e).-Compounds (26a-e) were prepared according to the reported method: ${ }^{15}$ (26a), colourless prisms (from ethanol), m.p. 133$134{ }^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ m.p. $134-135^{\circ} \mathrm{C}$); (26b), colourless prisms (from benzene), m.p. $227-229^{\circ} \mathrm{C}$ (lit., ${ }^{16}$ m.p. $228-230^{\circ} \mathrm{C}$); (26 c), colourless oil, b.p. $141-143^{\circ} \mathrm{C}$ at 1 mmHg (lit., ${ }^{15}$ b.p. $143^{\circ} \mathrm{C}$ at 1 mmHg); (26d), colourless prisms (from water), m.p. $124-$ $125^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ m.p. $123-124^{\circ} \mathrm{C}$); (26e), colourless prisms (from hexane), m.p. $93-94{ }^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ m.p. $94-95^{\circ} \mathrm{C}$).

Preparation of 2,6-Bismercaptomethyltoluene (2c).-This compound, prepared from (26e) according to the reported procedure, formed colourless needles (from hexane and benzene); m.p. $39.5-40^{\circ} \mathrm{C}$ (lit., ${ }^{7}$ m.p. $40-41^{\circ} \mathrm{C}$).

Preparation of 2-Methyl-7-t-butyl- (33) and/or 2-Methyl-$4,5,9,10$-tetrahydropyrene (34) from (5a) with $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$: Typical Procedure.-To a solution of compound (5a) (100 mg, 0.284 mmol) in benzene (20 ml) was added a solution of AlCl_{3} ($50 \mathrm{mg}, 0.364 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{ml})$. After the reaction mixture had been stirred for 2 h at $25^{\circ} \mathrm{C}$, it was poured into icewater and extracted with ether. The ether solution was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressure to leave a residue, which was recrystallized from MeOH to give (33) (64.4 $\mathrm{mg}, 82 \%$) as colourless prisms, m.p. $117-118^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}(\mathrm{KBr})$ 3040,2 960, 2 950, 2 900, $2850,1610,1470,1460,1360,1240$, 870,860 , and $740 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(9 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s})$, $2.84(8 \mathrm{H}, \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{s})$, and $7.04(2 \mathrm{H}, \mathrm{s}) ; m / z 276\left(\mathrm{M}^{+}\right)$ (Found: C, $91.0 ; \mathrm{H}, 8.8 . \mathrm{C}_{21} \mathrm{H}_{24}$ requires C, $91.25 ; \mathrm{H}, 8.75 \%$).

Compound (34), also obtained from (5a) under alternative conditions (see Table 2), formed colourless prisms (from $\mathrm{MeOH})$, m.p. $96-98^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}(\mathrm{KBr}) 3040,2950,2850,1605$, $1450,1240,860,820,760,740$, and $720 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.31$ (3 $\mathrm{H}, \mathrm{s}), 2.83(8 \mathrm{H}, \mathrm{s}), 6.86(2 \mathrm{H}, \mathrm{s})$, and $7.02(3 \mathrm{H}, \mathrm{s}) ; m / z 220\left(\mathrm{M}^{+}\right)$ (Found: C, 92.9; H, 7.25. $\mathrm{C}_{17} \mathrm{H}_{16}$ requires $\mathrm{C}, 92.68 ; \mathrm{H}, 7.32 \%$).

DDQ Oxidation of the Tetrahydropyrene (34) to give 2Methylpyrene (36).-To a solution of (34) $\mathbf{(6 6 . 1 ~ \mathrm { mg } , 0 . 3 0 \mathrm { mmol })}$ in dry benzene (30 ml) was added DDQ $(90 \%)(167 \mathrm{mg})$ at room temperature under a nitrogen atmosphere. After 2 days at room temperature the mixture was filtered and concentrated and the residue purified by column chromatography (silica gel) with a hexane-benzene ($1: 1$) as eluant. The crystals isolated from the eluate were recrystallized from EtOH to give (3b) $(53.2 \mathrm{mg}$, 82%) as colourless prisms, m.p. $144-145{ }^{\circ} \mathrm{C}$ (lit., ${ }^{17}$ m.p. 143$143.5^{\circ} \mathrm{C}$).

Preparation of 2-t-Butyl-4,5,9,10-tetrahydropyrene (39) from the Metacyclophane (5e) with $\mathrm{AlCl}_{3}-\mathrm{Me}_{3} \mathrm{NO}_{2}$.-To a solution of (5 e) $(15 \mathrm{mg}, 0.044 \mathrm{mmol})$ in benzene (4 ml) was added a solution of $\mathrm{AlCl}_{3}(7.7 \mathrm{mg}, 0.058 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(0.10 \mathrm{ml})$. The reaction mixture was worked up as described above, to afford (39) $8.5 \mathrm{mg}, 73 \%$) as colourless prisms (from MeOH), m.p. $109-110^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}$. KBr) $3030,2940,2850,1590,1470,1450$, $1430,1410,1370,1350,1220,1200,1170,870,750$, and 710 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34(9 \mathrm{H}, \mathrm{s}), 2.86(8 \mathrm{H}, \mathrm{s})$, and $7.02-7.06(5 \mathrm{H}$, m); $m / z 262\left(M^{+}\right)$(Found: C, 91.1; H, 8.4. $\mathrm{C}_{20} \mathrm{H}_{22}$ requires C , $91.55 ; \mathrm{H}, 8.45 \%$).

Preparation of 4,5,9,10-Tetrahydropyrene (40).-To a solution of (39) ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in benzene (10 ml) was added a solution of $\mathrm{AlCl}_{3}(15 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(0.5 \mathrm{ml})$. The reaction mixture was worked up as usual, to afford (40) (161 mg , 83%) as colourless prisms (from hexane), m.p. $136-138{ }^{\circ} \mathrm{C}$ (lit., ${ }^{18}$ m.p. $137-138{ }^{\circ} \mathrm{C}$).

DDQ Oxidation of the Tetrahydropyrene (40) to give Pyrene (41).-To a solution of (40$)(80 \mathrm{mg}, 0.39 \mathrm{mmol})$ in dry benzene
(35 ml) was added DDQ (90%) (200 mg) at room temperature under a nitrogen atmosphere. After 2 days, the mixture was worked up, to afford (41) ($63 \mathrm{mg}, 80 \%$) as colourless prisms (from EtOH), m.p. $148-149{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19}$ m.p. $149-150{ }^{\circ} \mathrm{C}$).

Preparation of Trisubstituted 8-Fluoro[2.2]metacyclophanes (5) from (3).-The preparation of compounds (3), (4), and (5) were described in a previous report. ${ }^{2}$ The yields are summarized in Scheme 2.

6,15,18-Trisubstituted 9-Fluoro-2,11-dithia[3.3]metacyclophanes (3).-Compound (3a), colourless prisms (from hexane), m.p. 152.5-153 ${ }^{\circ} \mathrm{C}$; $v_{\text {max. }}$ (KBr) $2950,1600,1480,1460,1390$, $1360,1260,1230,1190,1170,1090,880$, and $760 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.11,1.16(\mathrm{~s}, 7.2 \mathrm{H}$, cisoid-Bu'), $1.30,1.36(\mathrm{~s}, 10.8 \mathrm{H}$, transoid-Bu'), 1.47 (s, 1.8 H, transoid-Me), $2.40(\mathrm{~d}, 1.2 \mathrm{H}$, cisoid$\mathrm{Me}, J 4 \mathrm{~Hz}), 3.12-4.37\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $6.78-7.30(\mathrm{~m}, 4 \mathrm{H}$, ArH); $m / z 416\left(M^{+}\right)$(Found: C, $72.25 ; \mathrm{H}, 8.05 . \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{FS}_{2}$ requires, $\mathrm{C}, 72.07 ; \mathrm{H}, 7.98 \%$).

Compound (3b), colourless prisms (from hexane), m.p. 109$110^{\circ} \mathrm{C} ; v_{\text {max. }}$. (KBr) $2950,2875,1485,1460,1415,1360,1260$, $1225,1200,1095,910,870,780,755$, and $735 \mathrm{~cm}^{-1} ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.20 (s, 5.5 H , transoid-Bu'), 1.31 (s, 3.5 H , cisoid- Bu^{t}), 1.53 (s, 1.85 H , transoid-Me), 2.40 (d, 1.15 H , cisoid-Me, J 4 Hz), $3.16-$ $4.47\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $6.60-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; m / z 360\left(M^{+}\right)$ (Found: $\mathrm{C}, 70.1 ; \mathrm{H}, 7.05 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FS}_{2}$ requires $\mathrm{C}, 69.96 ; \mathrm{H}, 6.99 \%$).

Compound (3c), colourless prisms (from hexane), m.p. 94 $95^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{KBr}) 3020,2950,2900,1600,1475,1420,1385$, $1350,1220,1185,1165,1085,880,860,850,750,735$, and 710 $\mathrm{cm}^{1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.41,4.16$ (4 H, AB pattern, $J_{\mathrm{AB}} 15 \mathrm{~Hz}$), 3.71 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$), 6.68 (br s, 2 H , ArH), 6.68 (d, $2 \mathrm{H}, \mathrm{ArH}, J 6 \mathrm{~Hz}$), and 6.88 (br s, $2 \mathrm{H}, \mathrm{ArH}$); m / z $360\left(M^{+}\right)$(Found: C, 69.8; H, 6.9. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FS}_{2}$ requires C , 69.95; H, 6.99\%).

Compound (3d), colourless prisms (from hexane), m.p. 145$147^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}$ (KBr) $2950,2850,1600,1470,1450,1420,1350$, $1290,1250,1225,1185,1050,895,865,810,780,740$, and 730 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.14\left(\mathrm{~s}, 6 \mathrm{H}\right.$, cisoid- $\left.\mathrm{Bu}^{\prime}\right), 1.37(\mathrm{~s}, 3 \mathrm{H}$, transoid$\mathrm{Bu}^{\mathrm{t}}$), 1.56 (s, 1 H , transoid-Me), $2.40\left(\mathrm{~d}, 2 \mathrm{H}\right.$, cisoid-Me ${ }_{3}, J 4 \mathrm{~Hz}$), 3.16-4.40 (m, $8 \mathrm{H}, \mathrm{CH}_{2}$), and 6.52-7.31 (m,5 H, ArH); m/z 360 (M^{+}) (Found: C, 69.95; H, 7.25. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FS}_{2}$ requires C, 69.95; $\mathrm{H}, 6.99 \%$).

Compound (3e), colourless oil; $\mathbf{v}_{\text {max. }}(\mathbf{N a C l}) 2950,2920$, $2860,1595,1475,1455,1410,1390,1360,1250,1220,1195$, $1090,920,875,750,730$, and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.11(\mathrm{~s}, 9 \mathrm{H}$, Bu^{t}), 1.17 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), $3.32-4.51$ (m, $8 \mathrm{H}, \mathrm{CH}_{2}$), $6.60(\mathrm{~s}, 1 \mathrm{H}$, ArH), 6.88 (d, $2 \mathrm{H}, \mathrm{ArH}, J 6 \mathrm{~Hz}$), and 6.91 (s, $2 \mathrm{H}, \mathrm{ArH}$); m/z 402 (M^{+}).

Since crystallization of (3e) was incomplete, the identification was carried out by the spectral data of (4e) which was obtained from (3e) by oxidation.

6,15,18-Trisubstituted 9-Fluoro-2,11-dithia[3.3]metacyclophane 2,2,11,11-Tetraoxide (4).-(4a), pale orange solid, m.p. $270-300^{\circ} \mathrm{C}$; $v_{\text {max. }}$ (KBr) $2950,1600,1480,1400,1350,1300$, $1260,1230,1160,1140,1100,940,920,890,810,760,720$, and $700 \mathrm{~cm}^{-1} ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.13, $1.19(\mathrm{~s}, 7.2 \mathrm{H}$, cisoid-Bu'), 1.37, $1.38(\mathrm{~s}$, 10.8 H , transoid $-\mathrm{Bu}^{\mathrm{t}}$), $1.37\left(\mathrm{~s}, 1.8 \mathrm{H}\right.$, transoid $-\mathrm{Me}_{3}$), $2.50(\mathrm{~d}, 1.2 \mathrm{H}$, cisoid-Me, $J 4 \mathrm{~Hz}$), $3.80-4.91\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $7.16-7.68(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}$); m/z $480\left(\mathrm{M}^{+}\right.$) (Found: C, 62.35; H, 6.85. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{FO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 62.47 ; \mathrm{H}, 6.92 \%$).

Compound (4b), colourless prisms, m.p. $>300^{\circ} \mathrm{C}$; $v_{\text {max. }}$ (KBr) $2950,2900,1490,1450,1400,1360,1305,1260,1210,1170$, $1100,1020,940,890,860,810,725$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\prime}\right), 1.34(\mathrm{~s}, 1.85 \mathrm{H}$, transoid-Me), $2.55(\mathrm{~d}, 1.15 \mathrm{H}$, cisoid-Me), $J 4 \mathrm{~Hz}$), $3.72-4.92\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $6.67-7.72$ (m, $5 \mathrm{H}, \mathrm{ArH}$); m/z $424\left(M^{+}\right.$) (Found: C, 59.3; H, 6.0. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{FS}_{2}$ requires $\mathrm{C}, 59.41 ; \mathrm{H}, 5.94 \%$).

Compound (4c), colourless prisms, m.p. $>300^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}(\mathrm{KBr})$ $3020,2970,2920,1600,1480,1460,1405,1330,1300,1260$, $1200,1175,1115,915,890$, and $880 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.17(\mathrm{~s}, 9$ $\mathrm{H}, \mathrm{Bu}^{1}$), $2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.80-4.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34,4.76(4$ H, AB pattern, $J_{\mathrm{AB}} 14 \mathrm{~Hz}$), $7.09(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, ArH), and 7.27 (d, $2 \mathrm{H}, \mathrm{ArH}, J 6 \mathrm{~Hz}$); m/z $424\left(M^{+}\right)$(Found: C, 59.3; $\mathrm{H}, 5.9 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 59.41 ; \mathrm{H}, 5.94 \%$).

Compound (4d), colourless prisms, m.p. $>300^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}$ (KBr) $2960,2910,1610,1470,1405,1360,1310,1270,1255,1210$, $1175,1110,890,855,800,750,730$, and $695 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.15 (s, 6 H , cisoid-Bu'), 1.24 (s, 1 H , transoid-Me), $1.38(\mathrm{~s}, 3 \mathrm{H}$, transoid-Bu'), $2.50(\mathrm{~d}, 2 \mathrm{H}$, cisoid-Me, $J 4 \mathrm{~Hz}$), $3.68-4.89(\mathrm{~m}, 8$ $\mathrm{H}, \mathrm{CH}_{2}$), 6.68-6.89, and 7.12-7.76 (m, 5 H, ArH); m/z 424 (M^{+}) (Found: C, 59.7; $\mathrm{H}, 6.2 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FS}_{2} \mathrm{O}_{4}$ requires C , 59.41 ; H, 5.94%).

Compound (4e), colourless prisms, m.p. $>300^{\circ} \mathrm{C}$; $\boldsymbol{v}_{\text {max. }}(\mathrm{KBr})$ $2950,2860,1550,1480,1415,1350,1305,1255,1170,1110$, $1030,1000,880,840,810,750$, and $710 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.16(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 3.72-4.96\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, and 7.08 7.72 (m, $4 \mathrm{H}, \mathrm{ArH}$); m/z 466 (M^{+}) (Found: C, 61.9; H, 6.6. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{FS}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.78 ; \mathrm{H}, 6.70 \%$).

5,13,16-Trisubstituted 8-Fluoro[2.2]metacyclophane (5).Compound (5a), colourless prisms (from hexane), m.p. 188$189^{\circ} \mathrm{C}$; $v_{\text {max. }}(\mathrm{KBr}) 2950,2880,1480,1360,1295,1280,1210$, $1190,1090,885,860,805,745$, and $720 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.63(\mathrm{~s}$, $3 \mathrm{H}), 1.27$ (s, 9 H$), 1.31(\mathrm{~s}, 9 \mathrm{H}), 2.48-3.04(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H})$, and $7.06\left(\mathrm{~d}, 2 \mathrm{H}, J 6 \mathrm{~Hz}\right.$); m/z $352\left(\mathrm{M}^{+}\right.$) (Found: C, 85.2; H, 9.65. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~F}$ requires C, $85.18 ; \mathrm{H}, 9.43 \%$).

Compound ($5 \mathbf{b}$), colourless prisms (from hexane), m.p. 192$194{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}$ (KBr) $2970,2870,1590,1480,1460,1435,1360$, $1295,1200,1185,1115,895,870,810,780,740$, and $715 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.59(\mathrm{~d}, 3 \mathrm{H}, J 2 \mathrm{~Hz}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 2.40-3.72(\mathrm{~m}, 8$ H), and 6.88-7.24 (m, 5 H); m/z $296\left(\mathrm{M}^{+}\right.$) (Found: C, 85.2; H, 8.45. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}$ requires $\mathrm{C}, 85.09 ; \mathrm{H}, 8.50 \%$).

Compound (5 c), colourless prisms (from MeOH), m.p. 44 $45^{\circ} \mathrm{C}$; $v_{\text {max. }}(\mathrm{KBr}) 3020,2950,2850,1595,1475,1460,1435$, $1360,1280,1200,1180,860,840$, and $740 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.35 (s, 9 H), $1.95-3.06$ (m, 8 H), 2.32 (s, 3 H), 4.09 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 6.87 (br s, 2 H), and $7.02(\mathrm{~d}, 2 \mathrm{H}, J 6 \mathrm{~Hz}) ; m / z 296\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 85.45 ; \mathrm{H}, 8.62 \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}$ requires $\mathrm{C}, 85.09 ; \mathrm{H}, 8.50 \%$).

Compound (5 d), colourless prisms (from hexane), m.p. 142$143{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}$ (KBr) 3050,2 970, $2860,1480,1455,1430,1360$, $1296,1250,1185,1060,1020,1005,875,860,805,780$, and 740 $\mathrm{cm}^{-1} ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 0.63(\mathrm{~d}, 3 \mathrm{H}, J 2 \mathrm{~Hz}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 2.48-3.00$ (m, 8 H), and 6.72-7.32 (m, 5 H); m/z $296\left(\mathrm{M}^{+}\right)$(Found: C, 85.1; $\mathrm{H}, 8.2 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}$ requires $\mathrm{C}, 85.09 ; \mathrm{H}, 8.50 \%$).

Compound (5e), colourless prisms (from hexane), m.p. 157$158{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max. }}$ (KBr) $2960,2850,1590,1565,1470,1420,1390$, $1360,1280,1240,1200,1090,1070,1020,880,800,780,750$, 735 , and $710 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 2.50-$ $3.36(\mathrm{~m}, 8 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H})$, and $6.96-7.66(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 338$ (M^{+}) (Found: C, 74.0; H, 8.2. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~F}$ requires $\mathrm{C}, 74.20 ; \mathrm{H}$, 8.04%).

References

1 Part 15, T. Yamato, K. Kobayashi, and M. Tashiro, Org. Prep. Proced. Int., to be published.
2 M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 1543.
3 M. Tashiro, K. Koya, and T. Yamato, J. Am. Chem. Soc., 1982, 104, 3707.

4 M. Tashiro and T. Yamato, J. Org. Chem., 1985, 50, 2939.
5 M. Tashiro and T. Yamato, Org. Prep. Proced. Int., 1981, 31, 1.
6 M. Tashiro and T. Yamato, J. Chem. Soc., Perkin Trans. 1, 1979, 176.
7 R. M. Mitchell and V. Boekelheide, J. Am. Chem. Soc., 1974, 96, 1547.
8 J. R. Jones and D. Nightingale, J. Am. Chem. Soc., 1944, 66, 154.
9 M. S. Carpenter and W. M. Easter, J. Org. Chem., 1954, 19, 77.
10 R. R. Fraser, Can. J. Chem., 1960, 38, 226.

11 V. Boekelheide and P. H. Anderson, J. Org. Chem., 1973, 33, 3928.
12 M. Tashiro, Synthesis, 1979, 921.
13 O. L. Brady and J. K. Lahiri, J. Chem. Soc., 1934, 1954.
14 J. B. Cohen, P. K. Dutt, J. Chem. Soc., 1914, 105, 501.
15 W. S. Lindsay, P. Stokes, L. G. Humber, and V. Boekelheide, J. Am. Chem. Soc., 1961, 83, 943.
16 C. Graebe, Bossel, Fr. Ann., 1896, 290, 206.

17 H. Vollmann, H. Becker, M. Corell, and H. Streek, Justus Liebigs Ann. Chem., 1937, 534, 112.
18 M. Fujimoto, T. Sato, and K. Hata, Bull. Chem. Soc. Jpn., 1967, 40, 600.

19 N. N. Saha and P. J. Baghi, J. Org. Chem., 1955, 20, 1392.
Received 5th August 1986; Paper 5/1352

